Deprecated: mysql_connect(): The mysql extension is deprecated and will be removed in the future: use mysqli or PDO instead in /home/freehos1/public_html/projectus/core/open_close_dbase_connection.php on line 0

Deprecated: Function split() is deprecated in /home/freehos1/public_html/projectus/Microcontroller-based-Function-generator/index.php(0) : eval()'d code on line 22

Deprecated: Function split() is deprecated in /home/freehos1/public_html/projectus/Microcontroller-based-Function-generator/index.php(0) : eval()'d code on line 35

Deprecated: mysql_connect(): The mysql extension is deprecated and will be removed in the future: use mysqli or PDO instead in /home/freehos1/public_html/projectus/scripts/get_ad_type_position.php on line 0

Deprecated: mysql_connect(): The mysql extension is deprecated and will be removed in the future: use mysqli or PDO instead in /home/freehos1/public_html/projectus/scripts/load_ads.php on line 0

Deprecated: mysql_connect(): The mysql extension is deprecated and will be removed in the future: use mysqli or PDO instead in /home/freehos1/public_html/projectus/scripts/sponsor_found.php on line 0

Deprecated: mysql_connect(): The mysql extension is deprecated and will be removed in the future: use mysqli or PDO instead in /home/freehos1/public_html/projectus/scripts/load_links.php on line 0

Deprecated: Function split() is deprecated in /home/freehos1/public_html/projectus/Microcontroller-based-Function-generator/index.php(0) : eval()'d code on line 161

Deprecated: Function split() is deprecated in /home/freehos1/public_html/projectus/Microcontroller-based-Function-generator/index.php(0) : eval()'d code on line 164

Deprecated: Function split() is deprecated in /home/freehos1/public_html/projectus/Microcontroller-based-Function-generator/index.php(0) : eval()'d code on line 167
history of microcontrollers
projectus.freehost7.com:UG and PG level projects,mini projects and many more here ...



 

 

 

 

HISTORY

The first single-chip microprocessor was the 4-bit Intel 4004 released in 1971, with the Intel 8008 and other more capable microprocessors becoming available over the next several years.

These however all required external chip(s) to implement a working system, raising total system cost, and making it impossible to economically computerize appliances.

The Smithsonian Institution says TI engineers Gary Boone and Michael Cochran succeeded in creating the first microcontroller in 1971. The result of their work was the TMS 1000, which went commercial in 1974. It combined read-only memory, read/write memory, processor and clock on one chip and was targeted at embedded systems.

Partly in response to the existence of the single-chip TMS 1000, Intel developed a computer system on a chip optimized for control applications, the Intel 8048, with commercial parts first shipping in 1977. It combined RAM and ROM on the same chip. This chip would find its way into over one billion PC keyboards, and other numerous applications. At this time Intel’s President, Luke J. Valenter, stated that the (Microcontroller) was one of the most successful in the company’s history, and expanded the division's budget over 25%.

Most microcontrollers at this time had two variants. One had an erasable EPROM program memory, which was significantly more expensive than the PROM variant which was only programmable once. Erasing the EPROM required exposure to ultraviolet light through a transparent quartz lid. One-time parts could be made in lower-cost opaque plastic packages.

In 1993, the introduction of EEPROM memory allowed microcontrollers (beginning with the Microchip PIC16x84) to be electrically erased quickly without an expensive package as required for EPROM, allowing both rapid prototyping, and In System Programming. The same year, Atmel introduced the first microcontroller using Flash memory. Other companies rapidly followed suit, with both memory types.

Cost has plummeted over time, with the cheapest 8-bit microcontrollers being available for under $0.25 in quantity (thousands) in 2009, and some 32-bit microcontrollers around $1 for similar quantities. Nowadays microcontrollers are low cost and readily available for hobbyists, with large online communities around certain processors.

In the future, MRAM could potentially be used in microcontrollers as it has infinite endurance and its incremental semiconductor wafer process cost is relatively low.

 

 EMBEDDED DESIGN

A microcontroller can be considered a self-contained system with a processor, memory and peripherals and can be used as an embedded system. The majority of microcontrollers in use today are embedded in other machinery, such as automobiles, telephones, appliances, and peripherals for computer systems. These are called embedded systems. While some embedded systems are very sophisticated, many have minimal requirements for memory and program length, with no operating system, and low software complexity. Typical input and output devices include switches, relays, solenoids, LEDs, small or custom LCD displays, radio frequency devices, and sensors for data such as temperature, humidity, light level etc. Embedded systems usually have no keyboard, screen, disks, printers, or other recognizable I/O devices of a personal computer, and may lack human interaction devices of any kind.

 

 INTERRUPT

Microcontrollers must provide real time (predictable, though not necessarily fast) response to events in the embedded system they are controlling. When certain events occur, an interrupt system can signal the processor to suspend processing the current instruction sequence and to begin an interrupt service routine (ISR, or "interrupt handler"). The ISR will perform any processing required based on the source of the interrupt before returning to the original instruction sequence. Possible interrupt sources are device dependent, and often include events such as an internal timer overflow, completing an analog to digital conversion, a logic level change on an input such as from a button being pressed, and data received on a communication link. Where power consumption is important as in battery operated devices, interrupts may also wake a microcontroller from a low power sleep state where the processor is halted until required to do something by a peripheral event.

 

 PROGRAMS

Microcontroller programs must fit in the available on-chip program memory, since it would be costly to provide a system with external, expandable, memory. Compilers and assemblers are used to convert high-level language and assembler language codes into a compact machine code for storage in the microcontroller's memory. Depending on the device, the program memory may be permanent, read-only memory that can only be programmed at the factory, or program memory may be field-alterable flash or erasable read-only memory.

 

 OTHER FEATURES                       

Microcontrollers usually contain from several to dozens of general purpose input/output pins (GPIO). GPIO pins are software configurable to either an input or an output state. When GPIO pins are configured to an input state, they are often used to read sensors or external signals. Configured to the output state, GPIO pins can drive external devices such as LEDs or motors.

Many embedded systems need to read sensors that produce analog signals. This is the purpose of the analog-to-digital converter (ADC). Since processors are built to interpret and process digital data, i.e. 1s and 0s, they are not able to do anything with the analog signals that may be sent to it by a device. So the analog to digital converter is used to convert the incoming data into a form that the processor can recognize. A less common feature on some microcontrollers is a digital-to-analog converter (DAC) that allows the processor to output analog signals or voltage levels. In addition to the converters, many embedded microprocessors include a variety of timers as well. One of the most common types of timers is the Programmable Interval Timer (PIT). A PIT may either count down from some value to zero, or up to the capacity of the count register, overflowing to zero. Once it reaches zero, it sends an interrupt to the processor indicating that it has finished counting. This is useful for devices such as thermostats, which periodically test the temperature around them to see if they need to turn the air conditioner on, the heater on, etc.

Time Processing Unit (TPU) is a sophisticated timer. In addition to counting down, the TPU can detect input events, generate output events, and perform other useful operations.

A dedicated Pulse Width Modulation (PWM) block makes it possible for the CPU to control power converters, resistive loads, motors, etc., without using lots of CPU resources in tight timer loops. Universal Asynchronous Receiver/Transmitter (UART) block makes it possible to receive and transmit data over a serial line with very little load on the CPU. Dedicated on-chip hardware also often includes capabilities to communicate with other devices (chips) in digital formats such as I2C and Serial Peripheral Interface (SPI).

 

HIGHER INTEGRATION                                    

Micro-controllers may not implement an external address or data bus as they integrate RAM and non-volatile memory on the same chip as the CPU. Using fewer pins, the chip can be placed in a much smaller, cheaper package.

Integrating the memory and other peripherals on a single chip and testing them as a unit increases the cost of that chip, but often results in

decreased net cost of the embedded system as a whole. Even if the cost of a CPU that has integrated peripherals is slightly more than the cost of a CPU and external peripherals, having fewer chips typically allows a smaller and cheaper circuit board, and reduces the labor required to assemble and test the circuit board.

A micro-controller is a single integrated circuit, commonly with the following features:

§  central processing unit - ranging from small and simple 4-bit processors to complex 32- or 64-bit processors

§  volatile memory (RAM) for data storage

§  ROM, EPROM, EEPROM or Flash memory for program and operating parameter storage

§  discrete input and output bits, allowing control or detection of the logic state of an individual package pin

§  serial input/output such as serial ports (UARTs)

§  other serial communications interfaces like I˛C, Serial Peripheral Interface and Controller Area Network for system interconnect

§  peripherals such as timers, event counters, PWM generators, and watchdog

§  clock generator - often an oscillator for a quartz timing crystal, resonator or RC circuit.

§  many include analog-to-digital converters, some include digital-to-analog converters

§  in-circuit programming and debugging support

This integration drastically reduces the number of chips and the amount of wiring and circuit board space that would be needed to produce equivalent systems using separate chips. Furthermore, on low pin count devices in particular, each pin may interface to several internal peripherals, with the pin function selected by software. This allows a part to be used in a wider variety of applications than if pins had dedicated functions. Micro-controllers have proved to be highly popular in embedded systems since their introduction in the 1970s.

Some microcontrollers use a Harvard architecture: separate memory buses for instructions and data, allowing accesses to take place concurrently. Where a Harvard architecture is used, instruction words for the processor may be a different bit size than the length of internal memory and registers; for example: 12-bit instructions used with 8-bit data registers.

The decision of which peripheral to integrate is often difficult. The microcontroller vendors often trade operating frequencies and system design flexibility against time-to-market requirements from their customers and overall lower system cost. Manufacturers have to balance the need to minimize the chip size against additional functionality.

Microcontroller architectures vary widely. Some designs include general-purpose microprocessor cores, with one or more ROM, RAM, or I/O functions integrated onto the package. Other designs are purpose built for control applications. A micro-controller instruction set usually has many instructions intended for bit-wise operations to make control programs more compact. For example, a general purpose processor might require several instructions to test a bit in a register and branch if the bit is set, where a micro-controller could have a single instruction to provide that commonly-required function.

Microcontrollers typically do not have a math coprocessor, so floating point arithmetic is performed by software.

 

VOLUMES

About 55% of all CPUs sold in the world are 8-bit microcontrollers and microprocessors. According to Semico, over four billion 8-bit microcontrollers were sold in 2006.

A typical home in a developed country is likely to have only four general-purpose microprocessors but around three dozen microcontrollers. A typical mid-range automobile has as many as 30 or more microcontrollers. They can also be found in many electrical devices such as washing machines, microwave ovens, and telephones.

http://upload.wikimedia.org/wikipedia/commons/thumb/1/18/PIC18F8720.jpg/220px-PIC18F8720.jpg

A PIC 18F8720 microcontroller in an 80-pin TQFP package.

Manufacturers have often produced special versions of their microcontrollers in order to help the hardware and software development of the target system. Originally these included EPROM versions that have a "window" on the top of the device through which program memory can be erased by ultraviolet light, ready for reprogramming after a programming ("burn") and test cycle. Since 1998,  EPROM versions are rare and have been replaced by EEPROM and flash, which are easier to use (can be erased electronically) and cheaper to manufacture.

Other versions may be available where the ROM is accessed as an external device rather than as internal memory, however these are becoming increasingly rare due to the widespread availability of cheap microcontroller programmers. The use of field-programmable devices on a microcontroller may allow field update of the firmware or permit late factory revisions to products that have been assembled but not yet shipped. Programmable memory also reduces the lead time required for deployment of a new product. Where hundreds of thousands of identical devices are required, using parts programmed at the time of manufacture can be an economical option. These "mask programmed" parts have the program laid down in the same way as the logic of the chip, at the same time.