**
References:**

[1]**
**L. R. Rabiner, R. W. Schafer, C. M. Rader,** **The Chirp z-Transform
Algorithm, IEEE** **Trans. on Audio And ElectroAcoustics VOL. au-17,** **NO.
2 JUNE** **1969

[2] Y.H.Hu, S.Naganathan, Efficient Implementation Of Chirp Z-Transform Using a CORDIC Processor, Vol.-1, 1988,pp.167-170

[3] Y.H.Hu, S.Naganathan, A Novel Implementation of a Chirp Z-Transform Using a CORDIC Processor, IEEE Trans. On Acoustics, Speech and Signal Processing, Vol. 38, No. 2, February, 1990.

[4] B. P. Lathi, Linear Systems and Signals. Carmichael, CA: Berkeley- Cambridge, 1992.

[5] S. S. Soliman and M. D. Srinath, Continuous and Discrete Signals and Systems.

[6] R. D. Strum and D. E. Kirk, First Principles of Discrete Systems and Digital Signal Processing.

[7] L.R. Rabiner and B.Gold. “Theory, and Application of Digital Signal Processing”. Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey, 1975.

[8] J.G. Proakis and D.G. Monolakis, Digital Sigrial Processing. Prentice-Hall International, Inc., 1996.

[9] P.A. Lynn and W. Fuerst, Introductory Digital Signal Processing With Computer Applications. John Wiley &

Sons, 1996.

[10] J.H. McClellan and C.M. Rader, Nuniber Theory in Digital Signal Processing. Prentice-Hall Inc., Englewood

Cliffs, New Jersy-1979

[11] H. Krishna, B. Krishna, K.Y. Lin and J.D. Sun, Computational Number theory and Digital Signal Processing.

CRC Press, Inc., 1994.

[12] X. Ran and K.J. Ray Liu, “Fast Algorithms for 2-D Circular Convolutions and Number Theoretic Transforms

Based on . Polynomial Transforms Over Finite Rings”, IEEE Transactions on Signal Processing, Vol. 43, No. 3, pp.

569-578, 1995.

[13] Chang, L.W., and Chen, M.Y.: ‘A new systolic array for Discrete Fourier Transform’, IEEE Trans. Acoust.

Speech Signal Process., 1988, 36, pp. 1665–1666

[14] Fang, W.H., and Wu, M.L.: ‘An efficient unified systolic architecture for the computation of discrete

trigonometric transforms’. Proc. ISCAS, 1997, pp. 2092–2095

[15] Guo, J.I., Liu, C.M., and Jen, C.W.: ‘The efficient memory-based VLSI array designs for DFT and DCT’, IEEE

Trans. Circuits Syst. II, Analog Digit. Signal Process., 1992, 39, (10), pp. 723–733

[16] Guo, J.I.: ‘An efficient parallel adder based design for one dimensional discrete fourier transform’, Proc. Natl.

Sci. Counc. Rep. China A, Phys. Sci. Eng., 2000, 24, (3), pp. 195–204

[17] H. T. Kung, “Why systolic architectures?,” Comput. Mag., vol. 15, pp. 37–45, Jan. 1982.

[18] J. A. Beraldin, T. Aboulnasr, and W. Steenart, “Efficient one-dimensional systolic array realization of discrete

Fourier transform,” IEEE Trans. Acoust. Speech, Signal Processing, vol. 36, pp. 1665–1667, Oct. 1988.

[19] W. H. Fang and M. L. Wu, “An efficient unified systolic architecture for the computation of discrete

trigonometric transforms,” Proc. ISCAS, vol. 3, pp. 2092–2095, 1997.

[20] J. I. Guo, C.-M. Liu, and C.-W. Jen, “The efficient memory-based VLSI array designs for DFT and DCT,” IEEE

Trans. Circuits Syst. II., vol. 39, pp. 723–733, Oct. 1992.

[21] G. D. Bergland, “A Raidx-Eight Fast-Fourier Transform Subroutine for Real-Valued Series,” IEEE Trans.

Audio Electroacoust. vol. 17, no. 2, pp. 138-144, June 1969.

[22] C. S. Burrus and T. W. Parks, DFT/FFT and Convolution Algorithms and Implementation, NY: John Wiley &

Sons, 1985.

[23] A. Avizienis, "Signed-digit number representations for fast parallel arithmetic," IRE Trans. Electron. Comput.,

vol. EC-10, pp. 389-400, Sept.1961.