**
References**:

[1]** **S.F. Oberman, M.J. Flynn,
Design Issues in Division and Other Floating Point Operations, IEEE
Transactions on Computers, 46 (1997) p-p. 154-161.

[2] J.A. Pineiro, J.D. Bruguera, High-Speed Double-Precision Computation of Reciprocal, Division, Square Root, and Inverse Square Root, IEEE Transactions on Computers, 51 (2002) p-p. 1377-1388.

[3]** **E. Antelo, P. Montuschi,
T. Lang, A. Nannarelli, Low Latency Digit-Recurrence Reciprocal and Square-Root
Reciprocal Algorithm and Architecture, in: Proceedings of the IEEE
International Symposium on Computer Arithmetic, 2005, p-p. 147-154.

[4] I. Park, T. Kim, Multiplier-less and Table-less Linear Approximation for Square and Square-root, in: Proceedings of the IEEE International Conference on Computer Design, 2009, p-p. 378-383.

[5] L. Ciminiera, P. Montuschi, Higher radix square rooting, IEEE Transactions on Computers, 39 (1990) p-p. 1220-1231

[6] H. Kabuo, T. Taniguchi, A. Miyoshi, H. Yamashita, M. Urano, H. Edamatsu, S. Kuninobu, Accurate Rounding

Scheme for the Newton-Raphson Method Using Redundant Binary Representation, IEEE Transaction on Computers, 43 (1994) p-p. 43-51.

[7] C. Ramamoorthy, J. Goodman, K. Kim, Some properties of iterative Square-Rooting Methods, Using High-speed Multiplication, IEEE Transaction on Computers, C-21 (1972) p-p. 837-847

[8] A. J. Thakkar, A. Ejnioui, Design and Implementation of Double Precision Floating Point Division and Square Root on FPGAs, in: Proceedings of the IEEE, International Conference on Aerospace, 2006

[9] S. Majerski, Square-Rooting Algorithms for High-Speed Digital Circuits, IEEE Transaction on Computers, c-34 (1985) 724-733

[10] I. Sajid, M. M. Ahmed, S. G. Ziavras, Pipelined Implementation of fixed point Square Root in FPGA Using Modified Non- Restoring Algorithm, in: Proceedings of the IEEE, International Conference on Computer and Automation Engineering, 2010, p-p 226-230

[11] T. J. Kwon, J. Draper,
Floating-Point Division and Square Root Implementation using a Taylor-Series
Expansion Algorithm with Reduced Look-up Tables, in: Proceedings of the IEEE,
51^{st} Midwest symposium on Circuits and Systems, 2008, p-p. 954-957

[12] M. Ye, T. Liu, Y. Ye, G. Xu, T. Xu, FPGA Implementation of CORDIC-Based Square Root Operation for Parameter Extraction of Digital Pre-Distortion for Power Amplifiers, in: Proceedings of the IEEE, International Conference on Wireless Communications Networking and Mobile Computing, 2010, p-p. 1-4

[13] M.D. Ercegovac, R. McIlhenny, Design and FPGA Implementation of Radix-10 Algorithm for Square Root with Limited Precision Primitives, in: Proceedings of the IEEE, International Conference on Signals, Systems and Computers, 2009, p-p. 935-939

[14] X. Wang, Y. Zhang, Q. Ye, S. Yang, A New Algorithm for Designing Square Root Calculators based on FPGA with Pipeline Technology, in: Proceedings of the IEEE, International Conference on Hybrid Intelligent Systems, 2009, p-p. 99-102

[15] C.N. Srinivasiengar, History of Ancient Indian Mathematics, the World Press Pvt. Ltd., 1967, p-p 35-36

[16] J.P. Deschamps, G.J.A. Bioul, G.D. Sutter, Synthesis of Arithmetic Circuits, FPGA, ASIC and Embedded Systems, Wiley Interscience Publications, 2006, pp. 440-444.

[17] J.S.S.B.K.T. Maharaja, Vedic mathematics, Motilal Banarsidass Publishers Pvt Ltd, Delhi, 2001.

[18] P. Saha, A. Banerjee, P. Bhattacharyya, A. Dandapat, High Speed ASIC Implementation of Complex Multiplier using VEDIC Mathematics, in: Proceedings of the IEEE, 2011, In Press, Corrected Proof.